¿QUÉ RELACIÓN HAY ENTRE LOS DRONES, LOS ROBOTS DE COMBATE, LAS ARMAS DIRIGIDAS A DISTANCIA Y LAS ARMAS AUTÓNOMAS?

Los Drones, los robots de combate, las armas dirigidas a distancia, así como los sistemas de armas autónomos, forman parte de una nueva generación de armamento que aprovecha los avances tecnológicos, producidos mayoritariamente en ámbitos civiles a fin de substituir el despliegue de tropas (humanas) por sistemas robóticos (Rodríguez et al., 2011). Todos estas tipologías de armamento, comparten características y propiedades comunes:

En primer lugar tienen la capacidad de reducir el número de tropas combatientes desplegadas en el terreno por parte de los ejércitos poseedores de las mismas, reduciendo así los costes de intervención (fundamentalmente los logísticos asociados al despliegue) así como las bajas propias. (Scharre & Norton, 2018)

En segundo lugar, tienen una capacidad intrínseca de invisibilización del conflicto a ojos de la opinión pública (Rodríguez-Álvarez & Martinez-Quirante, 2019), ya que para los periodistas y expertos en la materia es prácticamente imposible tener constancia de las intervenciones realizadas con este tipo de armamento. Ya que, al no estar precedidos por despliegues de tropas, o incluso declaraciones formales de guerra pueden pasar desapercibidos dando lugar a nuevas dinámicas de conflicto de baja intensidad, dotando, así de una mayor opacidad a los operativos militares.

En tercer lugar, todos estos tipos de armamento, profundizan, aún más, las dinámicas de la Guerra Asimétrica que se dan entre ejércitos o fuerzas combatientes que tienen un profundo “gap” tecnológico entre ellas (Thornton & Miron, 2020). Como por ejemplo en el caso de Israel y Palestina, donde la superioridad tecnológica de los primeros, determina un tipo de conflicto, no solo completamente desigual, sino además carente de incentivos reales para su resolución. Profundizando de esta forma la dinámicas de opresión preexistentes en el sistema.

En cuarto lugar y tal como se ha venido denunciando a lo largo de la última década, todas estas tipologías de armamento tienen el potencial de erosionar el Derecho Humanitario Internacional al aumentar el número de ejecuciones extrajudiciales, así como otro tipo de operaciones de tipo “quirúrgico”. Como ejemplo de este tipo de intervenciones podemos destacar la ejecución extrajudicial del General Irani Qasem Soleimani, abatido el 3 de Enero de 2020 por un dron Estadosunidense en el aeropuerto Internacional de Bagdad (BBC, 2020).

En quinto lugar, todos estos tipos de armamento, por motivos diferentes, representan problemas de tipo ético, relativos a la responsabilidad de los actos (tanto en
situaciones que involucran operadores humanos, como en las que no) además de añadir factores de incertidumbre e imprevisibilidad asociados a cualquier sistema tecnológico complejo, pudiendo generar errores que desembocuen en víctimas civiles. A modo de ejemplo se podría recordar la bomba MK 82 guiada por láser de 500 libras (227 kilos) fabricada por Lockheed Martin que impactó contra un autobús de Naciones Unidas en Yemen niños el 9 de agosto de 2018, matando a 40 niños o el ataque de marzo del mismo año, también en Yemen, esta vez contra un mercado, –en esa ocasión con una bomba MK 84 guiada a precisión, que según se reportó entonces- dejó 97 muertos civiles. (Elgabir et al., 2018)

Si bien, además de estas características y propiedades comunes, existen diferencias importantes entre las mismas a tenor de la participación o control humano sobre las mismas. (Musco, 2020)

En este sentido debemos tener en cuenta que lo que distingue a un arma autónoma del resto, es que pese a que el armamento autónomo puede tomar forma de drone, robots de combate, misil... etc. La clave reside en que este puede operar sin controladores humanos involucrados en el ciclo de acción del arma, a través de una Inteligencia Artificial. Es decir, lo que diferencia a un drone “normal” de un drone “autónomo” es que el primero necesita que un piloto “humano” lo maneje de forma remota, mientras que el drone autónomo puede llegar a tener capacidad operativa completa sin intervención humana.

Bibliografía: